ࡱ> 2/01`!iC@@W[Ʋ \IJ xڍV PV]@eh|DL kPHMl4Z1T0 RX5h@4!AOjW}:Ւ4_kuȝfϾwse & HԊ1dh+cVdv@k[yůnjcyRP} i ܷkX3ID Vj4" .aƯ\dq}|3OG8σ+("|_XSM"]dMl}tƗ`b12C(#8'PgqKAPGшa q'hBB.i6qMSqASpVG:Nរ=-d]&Ju¥QLκL9 W&z\smr`!s$UhNwg}#SxڕX x֟9DU(6*jܪآU>[ U*mSKJխKIіkK"ϙo^_<<眙9̜3gf祤$!z)B@HR|BAф@q$>?(eFJEBhP+9uJʘMI6d>Kbt. ׌faU [әؗvlj29j7ݮ ?2Up X_9>cjlߚu{Hewn3^jt-Obzo _˼B>3>#bxk&yh/N^ &xGDwAL$OcrH&{ȥ^w$})zr\gʾ~\*WUr:$Qp_ :M\։y\L1"Sͷ7<,L0^v-l$5yO[`/Ic޵+J;}nDZ-vFmSv̆Ӗs6سcCv%ܷAX <@%_R.wdzl =m#![ez2KfSdM'v )mSIYM6Ud&ɤ`~'z _3n ]{򮘅"8MD{)Zb=E尹` aU) T6N[j7SWyJV%uXGgx l^b[gFv^gA><s켁؋!<qKx,~_įyb=vk0B,wkXeE *[x';47`'5F}8?,o"+ XM" Q_gu>5t ^_7u^Iweu_9s=|Tgo;y6cCC ;>*V[{wp(Q$Al!"?a:ƬӃ"Lp9 |ˁXQAE{ߋ~^ q1rq:v"p}q;!:u*VN O8,s9u"l-rwWƑr/{:؅glUUW:ɾW;~Q)5]V}>Ū`sMX a3kcp*bV9݌)F0`(X^kΓ0[RiST]MU?EUMG?qA]wϢ5x  ]b {8ip?S8x8(tO@]ԡE xYk:^ߧt>]ҭi ]Z0[7$0\@=M/3xN6wZhgtcg"k/z6ﱧ'9a1[c:,AڒU4+8Ñt#Ö5ʸvaAFwd4n q9IdN$d#˱3ېؘdV$DZ$KJ6#dV#soEcv84I&&o\TW@o̡bh@SV(ui0j]p9~F`LJKރAKz0ֽh@ t+ZQԏP%%PsH RrS$Wh@$M&k$YW#uKNZƚ{m}6ՅyGdmZt9g 9;7I%37I+3 ]W9@LkrU)I{hO;V4ʴmLazӮ?7$*M65fj~62?P\RjP0~PΎ <96_CΙ 8a>i&RF,`fds 7Cs֚#속fl1_f|cޅ]f6InF3.Fw8\ MgtYK h[[=3n92Je0aIlɖ:NFe >r&sܥ㺚EY=8tx;&ՄO&6w m>ÆgmN_.m?ev2ެyU"٣{܅ $ʒ 5PhS mh_}6gam m}j+6 l)c $u{aI,M'd-bS&ڑ4Cm4o[iHI^%ͯ9I;pC0{4vf-"nDgRۖtNTzիn 9g{׵ m8mpFA 5dhFކvd@6C,/ ɅфQ64qwL,Lc d9BX/։\fOBVeH^h 5o/lWl{򱶷{oskOM;]/yu-d2gU~73 'LH7ab Mubjiڊxab/)dK7Nw1xb)-i,3meYR.ʳӣ=ڝ=Il:t}RWt/'hꪁn3EnxLG/cA-%;R0*&>m302#(`Y,A(D_2}S >!tPojwƃa'h]W>%h/W_C)=Q;xC䋫?]TU_.Յ_^/XR] _\<~//y/WejQX䋫}N|qwxQ~|qu[ځ~o}_ ryn@8=fPNG  IHDR48LsRGBgAMA a cHRMz&u0`:pQ<PLTEٟ pHYs.#.#x?vIDATxn6qVEu^%z{P9}ȫH8 \EqIM'vbǤa0ʑO$%R%GkYxJ ͋e$] 3A/L߈jΫL7s <4u0V[x?w_ƥ/xy*OdϺs^^&7k 4wO[f})͉s]=W/Oxy x7+˶JmuƓ<%wx4_+"!g<&5mpؓٙ=xzamKkJL v2MYv`k7yVgy^%z޷˅q3O?X8˃ i<}Ah;vvg=Du<=DFxu>9g&e(6oRcy2 :k u;IK)9̓"mb}{'ԡVi/K&<^4ͪ]W̳>xrxoyěey*e0м}uI=sW$oGbTTbrbnլMYlM>u"3j)o#ZzC {GЈ?nQiVN4Wq{=ޞb%:}R}?Cٲz]#Gքg!RU!mUs^kį\Dҗ8s'2mɺYFC2&;<5s^?*i޻e}zS/둾7{twxg 7yժPO>sCdζBȁ7=sc3.^O{<{J3Lo\JsY_>tr y'7es=V;<}۵5=mͽO7Mnku_DOxΖs\odO[;w8c#Iuy7)?[f7(WKw<}96y-Uۖ2x>r׵=9/7V}>xlP#̙]{<ƒ8/»lx!^ȁrx!^ȁrx!^ȁrx!^ȁr#aRG̳5QʎȰ5}oq3wE=ٳ_DC#q/,/Rg2Lek/5牁']קԇlݙ 2K< 7=0=8O< >1 87<5=5=8OE :;8<0B0: ?>4E>4K 8 >A=>2=K5 MB0?K From Observational Data to New Knowledge about Climate Change: Approaches and Main Stages   TZAlexander M. Sterin, Ph.D Russian Research Institute for Hydrometeorological Information  World Data Center (RIHMI-WDC) 6, Korolyov str., Obninsk, Kaluga region, 249035 E-mail:sterin@meteo.ru Z  0Problems to be mentioned:  10+ principles of climatic monitoring Eleventh principle of climatic monitoring Pyramid of climate information products Large climate data projects What do we want to detect? What is climate signal? The main questions by TAR IPCC Observational data vs Reanalysis outputs Traditional and robust (resistant) techniques in data processing and analysis Inhomogeneity detection, estimation, correction (or  correction ?), and trend re-estimation Why  ensemble of data series?*8b n$.Ten principles of climate monitoring: sources:. Karl, T.R., V.E. Derr, D.R. Easterling, C.K. Folland, D.J. Hoffman, S. Levitus, N.Nicholls, D.E. Parker, and G.W. Withee, 1995: Critical issues for long-term climate monitoring. Climatic Change, 31, 185-221 National Research Council, 1999: Adequacy of Climate Observing Systems, National Academy Press, Washington, DC, 51 pp Guidelines on Climate Observation Networks and Systems. WMO WCP WCDMP-No.52 WMO-TD No.1185 December 2003, 57 pp. :Fr  ?!$Ten principles of climate monitoring$1. Management of Network Change 2. Parallel Testing 3. Metadata 4. Data Quality and Continuity 5. Integrated Environmental Assessment 6. Historical Significance 7. Complementary Data 8. Climate Requirements 9. Continuity of Purpose 10. Data and Metadata Access ;The PYRAMID of derivative data sets for the climate studies"<;;Global climate generalization (separate figures) Climate data of high degree of generalization (small volume) Data sets derived from next lower level (limited volume) The data sets derived from observational data of lowest level (moderate volume) Lowest level  observational data before and after quality check (huge volume) &GPPH(n  ;The PYRAMID of derivative data sets for the climate studies"<;; &PP%2What do we want to detect? What is climate signal?332 &PP&VThe main questions by TAR IPCC: seven questions related to detection of climate change"WVV &PP'Large climate data projects   &PP((Observational data vs Reanalysis outputs)) & &PP)UTraditional and robust (resistant) techniques in climate data processing and analysisVVU &PP-UTraditional and robust (resistant) techniques in climate data processing and analysisVVU &PP*Inhomogeneity detection, estimation, correction (or  correction ?), and trend re-estimation\\ N &PP+zWhy  ensemble of data series for climate signal evaluation? >>= &PP,zWhy  ensemble of data series for climate signal evaluation? >>= &PP#BTen principles of climate monitoring additional eleventh principleB11. Redundancy: Multiple and independent observing systems should provide measurements, and mulitiple, independent research groups should analyze the data and provide climate monitoring data products. Such redundancy exists for many key climate variables, and enhances our understanding of uncertainty in estimates of climate variations (FORMULATED BY Seidel, Sterin et al., 2004, Journ. Climate, no.11) J] " THANK YOU!   Ten principles:1. Management of Network Change: Assess how and the extent to which a proposed change could influence the existing and future climatology obtainable from the system, particularly with respect to climate variability and change. Changes in observing times will adversely affect time series. Without adequate transfer functions, spatial changes and spatially dependent changes will adversely affect the mapping of climatic elements. "Z !Ten principles:2. Parallel Testing: Operate the old system simultaneously with the replacement system over a sufficiently long time period to observe the behavior of the two systems over the full range of variation of the climate variable observed. This testing should allow the derivation of a transfer function to convert between climatic data taken before and after the change. When the observing system is of sufficient scope and importance, the results of parallel testing should be documented in peer-reviewed literature. 6P!!Ten principles:3. Metadata: Fully document each observing system and its operating procedures. This is particularly important immediately prior to and following any contemplated change. Relevant information includes: instruments, instrument sampling time, calibration, validation, station location, exposure, local environmental conditions, and other platform specifics that could influence the data history. The recording should be a mandatory part of the observing routine and should be archived with the original data. Algorithms used to process observations need proper documentation. Documentation of changes and improvements in the algorithms should be carried along with the data throughout the data archiving process.. 6P! !Ten principles:Y4. Data Quality and Continuity: Assess data quality and homogeneity as a part of routine operating procedures. This assessment should focus on the requirements for measuring climate variability and change, including routine evaluation of the long-term, high-resolution data capable of revealing and documenting important extreme weather events. 0Z9YTen principles:y5. Integrated Environmental Assessment: Anticipate the use of data in the development of environmental assessments, particularly those pertaining to climate variability and change, as a part of a climate observing system's strategic plan. National climate assessments and international assessments, (e.g., international ozone or IPCC) are critical to evaluating and maintaining overall consistency of climate data sets. A system's participation in an integrated environmental monitoring program can also be quite beneficial for maintaining climate relevancy. Time series of data achieve value only with regular scientific analysis.. 6zP!$!QyTen principles:G6. Historical Significance: Maintain operation of observing systems that have provided homogeneous data sets over a period of many decades to a century or more. A list of protected sites within each major observing system should be developed, based on their prioritized contribution to documenting the long-term climate record.*HZ!!-G Ten principles:u7. Complementary Data: Give the highest priority in the design and implementation of new sites or instrumentation within an observing system to data-poor regions, poorly observed variables, regions sensitive to change, and key measurements with inadequate temporal resolution. Data sets archived in non-electronic format should be converted for efficient electronic access.&v`u Ten principles:x8. Climate Requirements: Give network designers, operators, and instrument engineers climate monitoring requirements at the outset of network design. Instruments must have adequate accuracy with biases sufficiently small to resolve climate variations and changes of primary interest. Modeling and theoretical studies must identify spatial and temporal resolution requirements.(yax Ten principles:9. Continuity of Purpose: Maintain a stable, long-term commitment to these observations, and develop a clear transition plan from serving research needs to serving operational purposes.(!! Ten principles:10. Data and Metadata Access: Develop data management systems that facilitate access, use, and interpretation of data and data products by users. Freedom of access, low cost mechanisms that facilitate use (directories, catalogs, browse capabilities, availability of metadata on station histories, algorithm accessibility and documentation, etc.), and quality control should be an integral part of data management. International cooperation is critical for successful data management.,Z!!  0` ___ff3ff` ___33f̙ffff` CCC` d___a%qw` *(Z___fFQt` 6CCCff3` CCCff` CCCf3f` f333ff` f333f3̙>?" dd@$?Fd@l A@lF`< n?" dd@   @@``PP   @ ` `(p>>  z   (  `T ``   "`` B  C H( @AB}C}EvFGxGH`I{QUNVWX}} }}}} `$ }} }}  G H I }} }} }}           `  `` "(`  F0B  C H @AB}C}EvFGFH`I}QUNVWX}} }}}} `$ }} }}  G H I }} }} }}           `  `` " "hB  s *D1"``  <0  "_^   Z"1@075F 703>;>2:0t  6  "_^   1@075F B5:AB0 B>@>9 C@>25=L "@5B89 C@>25=L '5B25@BK9 C@>25=L OBK9 C@>25=LM  6  #" `` `   h*0    6<  #" ``    j*0    6<  #" `` `   j*0 H  0޽h ? ___ff3ff80___PPT10. Eclipse   0     (  fT ``   "`` hB  s *D1"0`0B  C HH @AB}C}EvFG3/HI}QUNVWX}} }}}} `$ }} }}  G H I }} }} }}           `  `` "``  F0B  S N @AB}C}EvFG2JHÊI}QUNVWX}} }}}} `$ }} }}  G H I }} }} }}           `  `` "  "  <Ԓ  "m]   Z"1@075F 703>;>2:0  6  "o]    `(1@075F ?>4703>;>2:0  6  #" `` `   h*0    6H  #" ``    j*0    6  #" `` `   j*0 H  0޽h ? ___ff3ff80___PPT10. 0((    0F? P   ? `*   0K?    ? b*   6`O? _P  ? `*   6T? _  ? b* H  0޽h ? 3380___PPT10.Dk}  0 0P$(  Pr P S $ m]   r P S \ o]    H P 0޽h ? ___ff3ff___PPT10i.Gg@ !+D=' |= @B +}   0 @T$(  Tr T S 4nZ d^M  Z  r T S  oZ G^i Z  H T 0޽h ? ___ff3ff___PPT10i.Gg +D=' |= @B +   0 `0(  x  c $hZ d^  Z  x  c $@Z _^ Z  H  0޽h ? ___ff3ff___PPT10i.Gg +D=' |= @B +   0 0(  x  c $(Z d^  Z  x  c $Z _^ Z  H  0޽h ? ___ff3ff___PPT10i.Gg +D=' |= @B +   0 PX(  Xx X c $l G    X c $m # <<$D 0    X 6p   @RR X s * RB X s *Df f XB X 0Dv@ vXB X 0Dp p p XB  X 0Dp pLB  X c $D  RB  X s *D LB  X c $D 6g RB  X s *D" "LB X c $D X 0v )   TMONADS 2^B X 6D)@  X 6P{ "`x TVOLUME 2H X 0޽h ? 333dur___PPT10.+h3Dl' = @B D'' = @BA?%,( < +O%,( < +D' =%(%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*X1o%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*X1oD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*X1oD' =%( D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*Xo%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*XoD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*XoD' =%(pD' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*X%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*XD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*XD' =%((#D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*XG%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*XGD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*XGDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*X1%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*X1D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*X1+   0 (  x  c $ G   x  c $l # <   ^  0T G,$D  0 &Requirements for moderate volume derivative data sets (MONADS for U/A data, in particular): To include maximal amount set of monthly statistics To provide minimization of needed accesses to the lower level data (observational data) To provide the statistics that are correct to be generalized when upper-level data sets are obtained To minimize the heuristic considerations and heuristic statistics To provide a  bridge between the lower level data (observational data) and data sets of higher level of generalization D] 2 2]<yH  0޽h ? 333dur___PPT10|.+fPDT' = @B D' = @BA?%,( < +O%,( < +Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*]%(D' =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<*]D' =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<*]Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<*Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*N%(D' =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<*ND' =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<*NDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*N%(D' =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<*ND' =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<*NDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<* %(D' =+4 8?\CB#ppt_xBCB#ppt_xB*Y3>B ppt_x<* D' =+4 8?dCB1+#ppt_h/2BCB#ppt_yB*Y3>B ppt_y<* +    0   p8 (  x  c $ѭ G   x  c $lҭ # <     0ӭ G  8 2 2(   0`ܭ G The definitions of signal and noise largely depend on interests of researcher In climate research, the signal is defined by the interest of researcher and by consistency with physical ideas; noise is everything else unrelated to this object of interest Von Storch and Frankignoul (1998):  The large amounts of data that are usually studied in climate exhibit a complex mixture of signals and noise. The purpose of statistical analysis is to disentangle this mixture to find the needle (the signal) in the haystack (the noise). This allegory has two sides. First, it is difficult to find the needle in the haystack. Second, after it has been found, it should be easily recognizable& To identify the climate signal, advanced techniques must be required, but after the identification, the signal usually may be described by means of simple techniques such as composites, correlations, etc. X| 2#\8 cH  0޽h ? 333dur___PPT10e.+D=' |= @B +{   0 &(  x  c $ G   x  c $p # <     0 G  8 2 2(  0 G  HHow much is the world warming? Is the recent warming unusual? How rapidly did the climate change in the distant past? Have precipitation and atmospheric moisture changed? Are the atmospheric/oceanic circulations changing? Has climate variability, or have climate extremes, changed? Are the observed trends internally consistent?I 2IHH  0޽h ? 333dur___PPT10e.+D=' |= @B +,   0 4,(  x  c $05 G   x  c $6 # <     0T7 G  8 2 2(  0? ,$D 0 The results must be open, for testing by max user groups Serious errors and gaps are inevitable  users must understand this and decline from criticism addressed to authors! Authors must announce about their gaps immediately  they must feel proud but not feel guilty!!!!!! Based on: previous errors, previous experience, previous analysis, - the new stages (cycles) of large data projects must be planned and repeated. These repetitions must be every six to ten years&  2H  0޽h ? 333dur%$___PPT10$.+D$' = @B Dq$' = @BA?%,( < +O%,( < +Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*9%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*9D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*9Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*9%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*9D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*9Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*/%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*/D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*/Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*/E%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*/ED'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*/EDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*EY%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*EYD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*EYDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*Y%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*YD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*Y+6   0 :2(  x  c $TY G   x  c $,Z # <     0x[ G  8 2 2(  0dc t, ,$D 0 Reanalysis outputs are used widely  avalanche of publications, avalanche of applications In numerous publications, reanalysis outputs are mentioned as  DATA (in contrast to  MODEL OUTPUTS ) Reanalysis outputs are NOT  DATA !!!!! We need to study the difference between observational data and reanalysis outputs in all spatial considerations and temporal scales A special talk at ENVIROMIS 2004 will be devoted to trend differences in U/A data and in reanalysis outputs  2H  0޽h ? 333dur___PPT10|.+DT' = @B D' = @BA?%,( < +O%,( < +Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*Z%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*ZD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*ZDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*Z%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*ZD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*ZDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*n%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*nD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*nDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*n%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*nD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*n+    0 p(  x  c $`|z  | x  c $8|# < |   0|G  8 2 2(B  0,| Robust, resistant and non-parametric techniques could be applied as alternative to traditional statistics on all stages of data processing and analysis: In elementary statistical calculations  robust parameters of scale, location and association In trend analysis  robust measures of association between predictant and predictors In datasets of statistics, it is better to stop  one step before the final step in including the statistics We must not limit to one robust techniques against traditional techniques  the robust methods are numerous, and we may choose the worst of them We must give reference, what statistical techniques were used for calculations (for trend calculations, in particular) 2&2 H  0޽h ? 333dur___PPT10e.+D=' |= @B +   0 >(  x  c $0|z  | x  c $|# < |   0G  8 2 2(  0  @ 2h  c @A @>10AB=K92-22/0NH  0޽h ? 333dur___PPT10e.+D=' |= @B +$   0  (  x  c $z   x  c $# <    0G  8 2 2(  0#L,$D 0 ^The main principle: do not do harm to time series How to identify  inhomogeneity candidate points in climate time series? By statistical methods, from metadata, by physical models and considerations, by comparing with: baseline device, neighbor stations, other detectors, etc Are the  corrected data correct and are the  non-corrected data incorrect? A step back must be always provided Need to re-calculate trends without necessary getting so called  corrected series  wide  what-if analysis0 2&C H  0޽h ? 333dur___PPT10.+D' = @B D' = @BA?%,( < +O%,( < +Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*2%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*2D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*2Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*2{%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*2{D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*2{Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*{%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*{D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*{Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*b%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*bD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*bDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*b%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*bD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*bDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*+8   0   j (  ~  s *>_^   ~  s * _.     0@@G  8 2 2(  B4I335 L 1  VTropics 2     BO335 L 1  VTropics 2  F j 0TG,$D 0 $Primarily  vast intercomparison of series The  ensemble of independently obtained data sets from various independent platforms, is aimed to estimate group-based value of climate signal A robust criterion R is introduced to evaluate the ratio of uncertainty measures: MSE  median of individual values of standard error in signal estimates (associated with uncertainties in estimating by individual datasets) PSD  pseudo standard deviation of signal amplitudes (PSD= IQR/1.349)  associated with the spread of signal estimates from all available datasets Ratio R=2*MSE/PSD R>>1  uncertainty in signal is large enough in each individual dataset to encompass the spread between datasets R<=1  use of multiple (ensemble) estimates datasets gives more complete characterization of uncertainty than individual estimates R  non-parametric criterion, non-sensitive to outliers in individual datasets, if any D 22M&rH  0޽h ? 333dur++___PPT10+.++D+' = @B DM+' = @BA?%,( < +O%,( < +Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j+%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j+D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j+Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j+%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j+D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j+Dn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*jD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*jDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*jD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*jDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*jD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*jDn' =%(D' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j1%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j1D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j1D' =%(Dh' =%(D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j1D%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j1DD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j1DD' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*jD%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*jDD'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*jDD' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j;%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j;D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j;D' =4@BBBB%(D' =1:Bvisible*o3>+B#style.visibility<*j;%(D'  =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*j;D'  =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*j;+G_   0 b^Z^XX](  ~  s *(x_^   ~  s *y_.     0LzG  8 2 2(  B335 L 1  VTropics 2    B<335 L 1  VTropics 2  Z T^+ # #"6* nn[nT^+ ?  6 ?; ^F>6___PPT9 0.82 " dC @`A   6 ?; F>6___PPT9 0.4002 " dC @`A   6P ? ; F>6___PPT9 0.1602 " dC @`B   6@f ? ; F>6___PPT9 -0.6002 " dC @`@   64 ?; F>6___PPT9 MSU42 " dC @`D   6 ?0; F>6___PPT9 Tropics 2 " dC @`L  6, ?T; 0F>6___PPT9 Trend, 1979-20012 " dC @`?  6 ? ^; F>6___PPT9 1.52 " dC @`A  6X ? ; F>6___PPT9 0.0802 " dC @`A  6 ? ; F>6___PPT9 0.0602 " dC @`B  6f ? ; F>6___PPT9 -0.4402 " dC @`B  6$ ? ; F>6___PPT9 100-502 " dC @`A  60 ?0 ; F>6___PPT9 Globe2 " dC @`J  6 ?T 0; F>6___PPT9 Trend, 1958-972 " dC @`@  6h" ?A ^ F>6___PPT9 13.02 " dC @`G  <<6 ?A  F>6___PPT9 0.0602 " dC @`G  <7 ? A  F>6___PPT9 0.4102 " dC @`A  6J ? A F>6___PPT9 0.4102 " dC @`F  <T ?A F>6___PPT9 MSU42 " dC @`I  <_ ?0A  F>6___PPT9 Tropics2 " dC @`P  <i ?TA 0 F>6___PPT9 Pinatubo, 19912 " dC @`?  6dt ?^F>6___PPT9 2.82 " dC @`G  <$x ?F>6___PPT9 0.1002 " dC @`G  < ? F>6___PPT9 0.1402 " dC @`A   6u ?  F>6___PPT9 0.3402 " dC @`I ! <x ? F>6___PPT9 850-3002 " dC @`I " <z ?0F>6___PPT9 Tropics2 " dC @`O # < ?T0F>6___PPT9  1976-77 shift2 " d C  @`? $ 6ȵ ?^+F>6___PPT9 1.92 " dC @`A % 6d ?+F>6___PPT9 0.0302 " dC @`A & 6 ? +F>6___PPT9 0.0302 " dC @`A ' 6Lf ?  +F>6___PPT9 0.1302 " dC @`C ( 6\ ? +F>6___PPT9 850-3002 " dC @`C ) 6L ?0+F>6___PPT9 Tropics2 " dC @`J * 6 ?T0+F>6___PPT9 Trend, 1958-972 " dC @`? + 6 ?^A F>6___PPT9 4.42 " dC @`G , < ?A F>6___PPT9 0.3102 " dC @`G - < ? A F>6___PPT9 0.6802 " dC @`A . 6( ?  A F>6___PPT9 0.8902 " dC @`H / <l3 ? A F>6___PPT9 100-502 " dC @`I 0 <4 ?0A F>6___PPT9 Tropics2 " dC @`W 1 <H ?T0A F>6___PPT9  Agung, 19632 " d C @`@ 2 6,B ?^F>6___PPT9 14.72 " dC @`H 3 <] ?F>6___PPT9 0.00072 " dC @`H 4 <,i ? F>6___PPT9 0.00502 " dC @`C 5 6@s ?  F>6___PPT9 -0.00562 " dC @`F 6 <da ? F>6___PPT9 MSU42 " dC @`I 7 < ?0F>6___PPT9 Tropics2 " dC @`E 8 < ?T0F>6___PPT9 QBO2 " dC @`? 9 6` ?^F>6___PPT9 5.02 " dC @`G : < ?F>6___PPT9 0.0082 " dC @`G ; <@ ? F>6___PPT9 0.0192 " dC @`B < 6 ?  F>6___PPT9 -0.0502 " dC @`I = <  ? F>6___PPT9 850-3002 " dC @`I > < ?0F>6___PPT9 Tropics2 " dC @`F ? <X ?T0F>6___PPT9 ENSO2 " dC @`J @ < ?^F>6___PPT9  Value R2 " dC @`E A < ?F>6___PPT9 PSD2 " dC @`E B < ? F>6___PPT9 MSE2 " dC @`O C < ?  F>6___PPT9  Median signal2 " d C  @`G D < ? F>6___PPT9 Layer2 " dC @`F E < ?0F>6___PPT9 ZONE2 " dC @`H F <X ?T0F>6___PPT9 SIGNAL2 " dC @`fB G 6o ?T^`B H 01 ?T^`B I 01 ?T^`B J 01 ?T^`B K 01 ?TA ^A fB L 6o ?T+^+fB M 6o ?TT+`B N 01 ?00+`B O 01 ?+`B P 01 ?  +`B Q 01 ?  +`B R 01 ?+`B S 01 ?+fB T 6o ?^^+`B U 01 ?T^`B V 01 ?T ^ `B W 01 ?T; ^; `B X 01 ?T^H  0޽h ? 333dur___PPT10e.+D=' |= @B +   0 P0(  x  c $d*d^   x  c $$ _^  H  0޽h ? ___ff3ff___PPT10i.Gg +D=' |= @B +_   0 vn@(  ~  s * _^     `A j0286034<     `A j0293828Wj  H  0޽h ? ___ff3ff___PPT10i.Gg +D=' |= @B +   0 `\<(  \~ \ s *l_^   ~ \ s *m_^  H \ 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 p`<(  `~ ` s *z_^   ~ ` s *{_^  H ` 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 d<(  d~ d s *؆_^   ~ d s *_^  H d 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 h<(  h~ h s *_^   ~ h s *_^  H h 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 l<(  l~ l s * _^   ~ l s *|_^  H l 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 p<(  p~ p s *_^   ~ p s *л_^  H p 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 t<(  t~ t s *_^   ~ t s *\_^  H t 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 x<(  x~ x s *x_^   ~ x s *P_^  H x 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 |<(  |~ | s *@_^   ~ | s *_^  H | 0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +   0 <(  ~  s *X4?_^  ? ~  s *5?_^ ? H  0޽h ? 3F433___PPT10i.NP7 +D=' |= @B +r ARcYfn.h?y ok*h. nx;Jt,_.1Oh+'0 px   $ 11234Eclipse . .18Microsoft PowerPoint@ज़]@@@~ Gg@p5G|g  5 F  y--$xx--'--%,,--'--2$ "&*.38<AEI MPSUUU--'ff--2$    $(, 0 4 8<?BEEE --'@"Arial-. ff 2 ??."System7-@"Arial-. ff2 #??????.-@"Arial-. ff2 8 ??????????.-@"Arial-. ff 2 [?.-@"Arial-. ff2 _??????.-@"Arial-. ff2 t???????v.-@"Arial-. ff 2 ??.-@"Arial-. ff2  ??????????.-@"Arial-. ff2 ;???????v.-@"Arial-. ff 2 Q: .-@"Arial-. ff2 T???????v.-@"Arial-. ff 2 n?.-@"Arial-. ff2 s????????.-@"Arial-. ff2 ??????.-@"Arial-. ffE2 )From Observational Data to New Knowledge .-@"Arial-. ffF2 $*about Climate Change: Approaches and Main .-@"Arial-. ff2 +Stages.-@"Verdana-. 2 A Alexander M. .-@"Verdana-. 2 A<Sterin.-@"Verdana-.  2 AJ, .-@"Verdana-.  2 ANPh.D.-@"Verdana-. 62 GRussian Research Institute for .-@"Verdana-. $2 GdHydrometeorological.-@"Verdana-. 2 L Information .-@"Verdana-.  2 L9.-@"Verdana-. +2 L=World Data Center (RIHMI.-@"Verdana-.  2 L|-.-@"Verdana-.  2 L}WDC).-@"Verdana-.  2 R6, .-@"Verdana-. 2 R"Korolyov.-@"Verdana-.  2 R8str.-@"Verdana-.  2 R>., .-@"Verdana-. 2 RCObninskv.-@"Verdana-.  2 RV, .-@"Verdana-. 2 RZKaluga.-@"Verdana-. 2 Rlregion, 249035.-@"Verdana-.  2 XE.-@"Verdana-.  2 X-.-@"Verdana-. %2 X mail:sterin@meteo.ru.-՜.+,D՜.+,P     HOME$  ArialTimes New RomanVerdana WingdingsEclipse : From Observational Data to New Knowledge about Climate Change: Approaches and Main Stages Problems to be mentioned: /Ten principles of climate monitoring: sources:%Ten principles of climate monitoring<The PYRAMID of derivative data sets for the climate studies<The PYRAMID of derivative data sets for the climate studies3What do we want to detect? What is climate signal?WThe main questions by TAR IPCC: seven questions related to detection of climate changeLarge climate data projects )Observational data vs Reanalysis outputsVTraditional and robust (resistant) techniques in climate data processing and analysisVTraditional and robust (resistant) techniques in climate data processing and analysis\Inhomogeneity detection, estimation, correction (or correction?), and trend re-estimation>Why ensemble of data series for climate signal evaluation? >Why ensemble of data series for climate signal evaluation? CTen principles of climate monitoring additional eleventh principle THANK YOU!Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:Ten principles:    D 4<Version&_C0 . .E;QAB8= . ..  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&()*+,-.3Root EntrydO)Picturesr*Current User'SummaryInformation(PowerPoint Document(gDocumentSummaryInformation8